Flight in Icing Conditions Manual

Jean-francois DETIENNE F-dgac

FIC Manual

- Availability in two formats:
 - -complete version
 - -summary
- At the used of :
 - -pilots for training and recurrent training
 - -type rating courses...

FIC Manual Content

- What is ice? Meteorological factors
- Ice accretion, detection and protection
- Effect of ice on aircraft
- Aircraft operation

- Water droplets clouds
- Temperatures
- SLD formation
- Icing phenomenon

Fig. 2.3) Cumulus congestus Fig. 2.4) Cumulonimbus calvus precipitation Fig. 2.5) Cumuloninbus capillatus incus

- Water droplets clouds
- Temperatures
- SLD formation
- Icing phenomenon

Fig. 2.1) Frequency of ice crystal in clouds

Fig. 2.2) Skew-T diagram

- Water droplets clouds
- Temperatures
- SLD formation
- Icing phenomenon

Two mechanisms can cause SLD formation:

1) Thermal inversion

2) Collision coalescence phenomenon

- Water droplets clouds
- Temperatures
- SLD formation
- Icing phenomenon

Fig. 2.11) Cyclone

Ice Accretion

- Droplets trajectories
- Rime ice
- Glaze ice
- Residual ice shape after de icing

14

Ice Accretion

- Droplets trajectories
- Rime ice
- Glaze ice
- Residual ice shape after de icing

Rime ice

Glaze ice (single horn)

Gazeice (dublehms)

Ice Accretion

- Droplets trajectories
- Rime ice
- Glaze ice
- Residual ice shape after de icing

Fig. 4.13) Effect of de-icing boot activation in presence of ice formations beyond the commonly protected airfoil zones.

Ice Detection

- Flight crew is responsible for monitoring the presence of ice
- Automatic detection
- Manual detection

Ice Detection

- Flight crew is responsible for monitoring the presence of ice
- Automatic detection
- Manual detection

5.1) Visual cues

- 5.2) Detection of icing condition
- 5.3) Detection of ice accretion
- 5.4) Aerodynamics performance monitoring
- 5.5) Visualization on of surfaces
- 5.6) Remote detection of icing conditions
- 5.7) Detection beyond Appendix C
- 5.8) Ground icing detection
- **5.9**) Other

Fig. Non-intrusive ice detector

Fig. Intrusive ice detector

16-20/06/2003

23

Fig. Tufts used for ground icing detection

Ice Protection

- Ground anti-icing fluids
- In-flight protection
 - -pneumatic boot de-icing
 - -thermal ice protection
 - -electrothermal ice protection

Ice Protection

- Ground anti-icing fluids
- In-flight protection
 - -pneumatic boot de-icing
 - -thermal ice protection
 - -electrothermal ice protection

Fig. Example of ground ice treatment

Ice Protection

- Ground anti-icing fluids
- In-flight protection
 - -pneumatic boot de-icing
 - -thermal ice protection
 - -electrothermal ice protection....

Fig. Thermal (Bleed Air) Ice Protection

Aerodynamics Degradations

- Lift reduction
- Stall angle reduction
- Drag increase
- Longitudinal and lateral stability
- Loss of effectiveness of control surfaces

Effect of Ice on Aircraft (1/2)

- Wing stall
- Icing contaminated tail stall
- Icing contaminated roll upset
- Ground icing
- Engine and induction icing

Effect of Ice on Aircraft (2/2)

- Carburator icing
- Propeller icing
- Instrument icing
- Windshield

Contain in operational description

- Description
- Identification
- Avoidance
- Recovery

Aircraft Operation

- Weather analysis
- Pre-flight
- Taxiing
- Take-off
- Climb out
- Cruise
- Descent
- Approach and landing

Aircraft Operation

- Weather analysis
- Pre-flight
- Taxiing
- Take-off
- Climb out
- Cruise
- Descent
- Approach and landing

8.4) Take-off

NOTE: THIS PHASE INCLUDES THE CONSIDERATIONS THAT ARE USUALLY MADE BELOW 1500 FEET. FOR PISTON ENGINE SUCH PHASE WILL LAST UNTIL TAKE-OFF POWER IS APPLIED.

1. WEATHER RADAR	SWITCH ON THE WEATHER RADAR AND
	ASSESS THE SITUATION;
2. ICE PROTECTION SYSTEM	ARM OR MAKE SURE THE AIRCRAFT ICE
	PROTECTION SYSTEMS ARE ON;
3. TAKE-OFF SPEED	IF APPLICABLE, CONSIDER INCREASED
	TAKE-OFF SPEEDS;
4. ENGINE IGNITION	PLACE THE ENGINE IGNITION ON;
5. STATIC TAKE-OFF	PERFORM A STATIC TAKE-OFF; the
	aircraft manual will provide specific
	indications;
6. ENGINE PERFORMANCES	CHECK ENGINE PERFORMANCE and
	MINIMUM ENGINE SPEED DURING THE
	TAKE-OFF ROLL;
7. CARBURETOR HEAT SYSTEM	TAKE OFF WITH THE CARBURETOR HEAT
(if applicable)	SYSTEM OFF;
8. LANDING GEAR	CONSIDER RECYCLING THE LANDING
	GEAR.

Typical Ice Accident

Fig. Fatal accidents caused by icing concerning aircraft with more than 7 people on board since 1978

Conclusion

- This manual contains all the information required and useful for the pilot flying in icing conditions as well as for the ground icing than for the in-flight icing.
- This manual is also a good help for the different training during the pilot working life

Conclusion

- The summary is useful for the pilot to remember his knowledge on the icing condition
- The summary is easy to manipulate

They are both available in english version